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condensation on the arbitrary wave vector k� � 0 in the Hartree–Fock approximation. The
breaking of the gauge symmetry of the initial Hamiltonian was introduced following the
idea proposed by Bogoliubov in his theory of quasi-averages. The energy spectrum of the
collective elementary excitations is characterized by the interconnection of the exciton and
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1. Introduction

P roperties of atoms and excitons are dramati-
cally changed in the strong magnetic fields,

such that the distance between Landau levels ��c,
exceeds the corresponding Rydberg energies Ry and
the magnetic length l � ��c/eH is small compared
to their Bohr radii [1, 2]. Even more interesting
phenomena are exhibited in the case of two-dimen-
sional (2D) electron systems due to the quenching
of the kinetic energy at high magnetic fields, with
the representative example being integer and frac-
tional quantum Hall effects (FQHE) [3–5]. The dis-
covery of the FQHE [6–8] changed drastically the
established concepts about charged elementary ex-
citations in solids [5]. The notion of the incompress-
ible quantum liquid (IQL) was introduced in Ref.
[7] as a homogeneous phase with the quantized
densities � � p/q, where p is an integer and q � 1
is odd having charged elementary excitations with
a fractional charge e* � � e/q. These quasipar-
ticles were named anyons. A classification of free
anyons and their hierarchy were studied in [9, 10].
An alternative concept to hierarchical scheme was
proposed in [11], where the notion of the composite
fermions (CF) was introduced. The CF consists of
an electron bound to even number of flux quanta.
In the frame of this concept the FQHE of the elec-
trons can be understood as a manifestation of the
integer quantum Hall effect (IQHE) of CFs [11].
The statistics of anyons was determined in [10,
12]. It was established that the wave function of
the system changes by a complex phase factor
exp�i���, when the quasiparticles are inter-
changed. For bosons, � � 0, for fermions �
� 1 and for anyons with e* � � e/3 their
statistical charge is � � � 1/3. As was shown
in Ref. [13] there are no soft branches of neutral
excitations in IQL. The energy gap � for forma-
tion of quasielectron-quasihole pair has the scale
of Coulomb energy EQ � e2/	l, where 	 is the
background dielectric constant. However, the en-
ergy gap was found to be small � � 0.1EQ. The
lowest branch was called magnetoroton [13] and
can be modeled as a quasiexciton [5]. As men-
tioned in [5], the traditional methods and the
concepts based either on the neglecting by the
electron-electron interaction or on self-consistent
approximation are inapplicable to IQL. In a
strong magnetic field, the binding energy of an
exciton increases from Ry to Il.

There are two another small parameters in the
theory. One of them determines how strong the
magnetic field strength H is, and it verifies whether
the starting supposition of a strong magnetic field is
fulfilled. This parameter is expressed by the ratio
Il/��c 
 1, where Il is the magnetoexciton ioniza-
tion potential, Il � e2���/2�/�	�� and �c is the
cyclotron frequency eH/�c calculated with the re-
duced mass �. Another small parameter has a com-
pletely different origin and it is related to the con-
centration of the electron-holes (e-h) pairs. In our
case it can be expressed as a product of the filling
factor � � v2 and �1 � v2�, which reflects the Pauli
exclusion principle and the phase-space filing (PSF)
effect. The parameter v2�1 � v2� in the case of the
Bose–Einstein condensed excitons can take the form
u2v2, where u, v are Bogoliubov transformation co-
efficients and u2 � �1 � v2�. But in the case of
FQHE the filling factor � � v2 basically determines
the underlying physics and can not be changed
arbitrarily. Instead of the perturbation theory based
on the filling factor �, the exact numerical diagonal-
ization for a few number of particles N � 10
proved to be the most powerful tool for the study-
ing such systems [5]. The spherical geometry for
these calculations was proposed [10, 14], consider-
ing a few number of particles on the surface of a
sphere with the radius R � �Sl, whereas S is the
dimensional Haldane parameter, so as the density
of the particles on the sphere to be equal the filling
factor of 2DEG. The magnetic monopole in the cen-
ter of the sphere creates a magnetic flux through the
sphere 2S0, which is multiple to the flux quantum
0 � 2��c/e. The angular momentum L of the
quantum state on the sphere and the quasimomen-
tum k of the FQHE state on the plane obey the
relation L � Rk. Spherical model is characterized
by continuous rotational group, which is analogous
with the continuous translational symmetry in the
plane.

Properties of the symmetric 2D electron-hole
(e-h) system, with equal concentrations of both
components, with coincident matrix elements of
Coulomb electron-electron, hole-hole, and electron-
hole interactions in a strong perpendicular mag-
netic field also attracted a great attention during
past two decades [15–22]. A hidden symmetry and
the multiplicative states were discussed in the pa-
pers [19, 23, 24]. The collective states such as the
Bose–Einstein condensation (BEC) of two-dimen-
sional magnetoexcitons and the formation of the
metallic-type electron-hole liquid (EHL) were in-
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vestigated in [15–22]. The search for the Bose-Einstein
condensate has become a milestone in the condensed
matter physics [25]. The remarkable properties of su-
perfluids and superconductors are intimately related
to the existence of a bosonic condensate of the com-
posite particles consisting of an even number of fer-
mions. In highly excited semiconductors the role of
such composite bosons is taken by excitons, which are
bound states of electrons and holes. Furthermore, the
excitonic system has been viewed as a keystone sys-
tem for exploration of the BEC phenomena, since it
allows to control particle densities and interactions in
situ. Promising candidates for experimental realiza-
tion of such a system are semiconductor quantum
wells (QWs) [26], which have a number of advantages
compared to the bulk systems. The coherent pairing
of electrons and holes occupying only the lowest
Landau levels (LLLs) was studied using the Keldysh–
Kozlov–Kopaev method and the generalized ran-
dom-phase approximation in [20, 27]. The BEC of
magnetoexcitons takes place on a single exciton state
with wave vector k, supposing that the high density of
electrons in the conduction band and of holes in the
valence band were created in a single QW structure
with size quantization much greater than the Landau
quantization. In the case k � 0 a new metastable di-
electric liquid phase formed by the Bose–Einstein con-
densed magnetoexcitons was revealed in [20, 21]. The
authors of [16–19] first to took into account impor-
tance of the excited Landau levels (ELLs) and their
influence on the ground states of the systems. The
influence of the excited Landau levels (ELLs) of elec-
trons and holes was discussed in details in [21, 22].
The indirect attraction between electrons (e-e), be-
tween holes (h-h) and between electrons and holes
(e-h) due to the virtual simultaneous quantum tran-
sitions of the interacting charges from LLLs to the
ELLs is a result of their Coulomb scattering. The first
step of the scattering and the return back to the initial
states were described in the second order of the per-
turbation theory.

At the same time the ELLs play an important role
in the fundamental many body elementary and
combined processes displayed in optical spectra
such as shakeup processes [28, 29], where e-h pair
recombination is accompanied by transition of the
second electron to a higher energy state. A closely
related phenomenon of combined exciton-cyclotron
resonance (ExCR) was discovered in low-density
2DEG system of a semiconductor quantum well
heterostructure [3, 4]. Here, an incident photon cre-
ates a Wannier–Mott exciton and simultaneously
excites one of the resident electrons from the lowest

to a higher Landau level (LL). The ExCR line shifts
linearly with the magnetic field strength with a
slope comparable to the electron cyclotron fre-
quency. The intensity of the ExCR line increases for
higher illumination intensity, i.e., for larger nel�p�,
whereas the exciton lines remain insensitive. It was
found [30, 31], that the ExCR line is strongly �
polarized. Influence of the magnetic field and Cou-
lomb interaction on the combined ExCR was con-
sidered in different theoretical descriptions [30–32]
based on the first order perturbation theory of the
electron-photon interaction. In this article, we
present a rigorous theory of the ExCR on the base of
the dipole-active quantum transitions in the frame
of the second-order perturbation theory using as
perturbations the electron-radiation interaction and
the electron-electron Coulomb interaction.

According to [30, 31] the incident photon creates an
electron-hole pair with different Landau quantum
numbers ne and nh, so that the optically created hole
with ne � 0 together the background electron in the
initial state with nh � 0 form the magnetoexciton X0,0,
whereas the optically created electron with ne � 1
becomes a background electron in the final state with
the same quantum number. In semiconductor quan-
tum well structure of the type CdTe, the electrons
belong to s-type conduction band with spin projec-
tions sz � � 1, whereas the heavy-holes are formed
in p-type valence band with orbital momentum pro-
jection M � � 1. The heavy holes with total mo-
mentum projections jz � � 3/2 and electrons with
spin projection sz � � 1/2 form electron-hole pairs
with F � sz � jz � � 1 coinciding with the orbital
quantum number M. Without a magnetic field the
band-to-band quantum transitions are of allowed
type whereas in the presence of a strong perpendicu-
lar magnetic field they are dipole active when the
created e-h pair has the same Landau quantum num-
bers ne � nh, and are quadrupole-active when the
quantum numbers differ by 1, i.e. ne � nh � 1. In the
later case, as will be shown below, the probability
of quantum transition is proportional to �Q� 2D�2,
where Q� 2D is the projection of the light wave vector Q�
on the layer surface, which vanishes in the Faraday
geometry of excitation.

2. Two-Dimensional Combined
Magnetoexciton-Cyclotron Resonances
in a Strong Magnetic Field

As mentioned earlier, we consider a strong mag-
netic field such that the distance between the
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Landau levels is larger than the exciton Rydberg
and the magnetic length l � ��c/eH is smaller
than the Bohr radius aB � 	�2/me2, otherwise as-
suming small concentration of the resident elec-
trons, which does not influence structure of the
magnetoexcitons [30–33]. Let the light with a given
circular polarization �� �Q creates an electron-heavy-
hole pair with equal Landau quantum numbers ne

� nh � 0 and circular polarization �� M in the
presence of a background electron. The amplitude
of this matrix element is proportional to ��� *�Q � �� M�
and depends essentially on the reciprocal spin ori-
entations of the optically created electron defined
by the value M and background electron. On the
second step of the perturbation theory these two
electrons undergo the Coulomb scattering process,
and as a result one of them remains on the lowest
Landau level and the second electron is transferred
on the final state ne � 1. Because the Coulomb
direct and exchange interactions this scattering pro-
cess depends on the mutual spin orientations of
two electrons.

The probability of the transitions between the
initial and the final states is

P��Q;i;F� �
2�

�
�Z�i�F��2��Ei � EF� (1)

where the second-order matrix elements

Z�i�F� � �
u

�i�He-rad�u��u�HCoul�F�

Ei � Eu
(2)

is calculated using the first-order matrix elements
�i�He-rad�u� and �u�Hcoul�F� between the initial and in-
termediate and the final states. He-rad is the Hamil-
tonian of electron-photon interaction describing
only the band-to-band optical transitions, and HCoul

is the Hamiltonian of the electron-electron Cou-
lomb interaction. Ei and Eu are energies of the initial
and intermediate states. In the initial state there are
a photon and a background electron described by
the wave function

�i, � ;1,0,T� � �C �Q	�†a†
1/ 2,0,T�0�. (3)

Here �C�Q	�† � 1/�2 �C�Q,1 � iC�Q,2�
† is the photon

creation operator with wave vector Q� , and circular
polarization ��� Q


�* � 1/�2�e� �Q,1 � ie� �Q,2�*, where e� �Q,1

are the transverse linear polarizations. a†
1/ 2,0,T is the

electron creation operator labeled in Landau gauge

by the spin index 1/2, quantum number ne � 0,
and unidimensional vector T.

The intermediate state �u� consists of the elec-
tron-heavy-hole pair with ne � nh � 0, wave
numbers f and g, with spin and full momentum
projections sz � � 1/2, jz � � 3/2 resulting in
M � � 1 and circular polarization �� M corre-
spondingly, as well as of the background electron
in the same initial state but with changed wave
number h. Introducing the hole creation operator
b†

jz,nh,g the intermediate state can be written as

�u,
,1� � �u,
,f,g;1,0,h� � a†
	1/ 2,0,f b†


3/ 2,0,ga†
1/ 2,0,h�0�

(4)

The final state �F� is the optically created magneto-
exciton on the lowest Landau levels ne � nh � 0,
with two-dimensional wave vector k�ex � �kx,ky� and
the summary spin projection of the e-h pair F � sz

� jz � M � � 1, together with the excited
background electron on the state ne � 1 with wave
number R

�F,k�ex,	;1,1,R� � �̂ex
�0,0�†

�k�ex,	�a†
1/ 2,1,R�0�, (5)

where the exciton creation operator in Landau
gauge [7, 8] is

�ex
�n,m�†�k�,M � � 1� �

1

�N
�

t

eikytl0
2

a†

1/ 2,n,

kx

2 �tb†
	3/ 2,m,

kx

2 t.

(6)

The creation energy of the magnetoexciton is

Eex
�n,m��k�,sz, jz� � Eg �

1
2��c� � n��ce � m��ch

� Iex
�n,m��k�� � �gesz � g̃hjz��BH, (7)

where �ce, �ch, and �c� are the cyclotron frequencies
for me, mh and � � memh/me � mh, Iex

�n,m��k� is the
ionization potential of magnetoexciton [34]. The last
term, being the Zeeman energy, contains the g-
factors g̃e and g̃h, which must be determined exper-
imentally.

The full probability of the transition is obtained
by summarizing (1) over T, multiplied by the filling
factor �2 and summarizing over the quantum num-
bers k�ex and R of the final states
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W �
�2S

�2��2�
T

�
R
�d2k� P��Q;i;F� (8)

To calculate the probability of the transitions, we
use the matrix elements of the electron-photon in-
teraction between the initial and the intermediate
states expressed in the terms of the matrix element
of the band-to-band transition Pc��k�,g� obtained in
[35], and matrix elements of the electron-electron
Coulomb interaction obtained in [34]. The later do
not vanish only between the intermediate and final
states with the same quantum number M because
the light is not involved and does not influence
symmetry of the 2D layer. For the background elec-
trons polarized in the same direction as the direc-
tion of the magnetic field, sz � 1/2 we obtain the
probabilities of the quantum transition

W��Q;;;1� �
8��2

Ll0
2 IlB(�Q,) � �

0

�

xdxex2�1
�

�
x2

8 �1F1�1
2,2,

x2

2 	�2
 � ���̃ � e
x2

4 I0�x2

4 		, (9)

where 1F1�a,b,x� is the confluent hypergeometric
function [36].

For another circular polarization in the presence
of the same background electrons

W��Q;�;�;1� �
2��2

Ll0
2 IlB��,��

� �
0

�

xdxex2
���̃� � e

x2

4 I0�x2

4 		. (10)

For two other configurations the probabilities of
transitions vanish

W��Q;;�;1� � W��Q;�;;1) � 0 (11)

Here x � kl and �̃	 � �	/Il are the dimensionless
wave vector and the energy detuning, Iex

�0,0��k�
� ex2/4I0�x2/4� is the magnetoexciton ionization
potential, I0�z� is the modified Bessel function, and
B��Q,	� is expressed following to [35] in the matrix
element of the band-to-band transition Pcv�k�,g�

B��Q,	�

�

� e
m0
	2

�Pcv�2

�Q���Q � Eg �
1
2��c� � �3

2gh �
1
2ge	�BH�2 (12)

The probabilities of quantum transitions depend
on the reciprocal orientation of the photon and exci-
ton circular polarization vectors �� k�

	 and ��M expressed
by the factor �����k

	 � ��M��2. In the Faraday geometry light
propagates along the magnetic field, Q� 2D � 0 and �� �Q

	

coincides with ��M, so that �� �Q
� � ��1 and �� �Q

 � ��1.
This means spin polarization of the e-h pair because
the magnetoexciton with M � � 1 is composed of
the heavy-hole with jz � � 3/2 and electron with
sz � 1/2 whereas the magnetoexciton with M �
� 1 is composed of the heavy-hole with jz � 3/2
and electron with sz � � 1/2. Two electrons with
sz � 1/2 in the intermediate state interdependently
participate in the quantum transition being identical,
so that a direct and exchange terms are involved. On
the contrary, two electrons with different spins par-
ticipate separately in the transition. This difference
essentially influences probability of the combined
quantum transition, which is expressed in additional
factor 4 in the expression (9) with participation of two
electrons with parallel spins compared to the proba-
bility with participation of two electrons with antipa-
rallel spin projections. The transition probability is
strongly enhanced if the circularly polarized light ex-
cites an e-h pair so that the electron polarization of the
magnetoexciton and of the background electrons are
the same.

The momentum conservation for the magnetoex-
citon-photon quantum transition is implemented
by the equality k�ex � Q� 2D, whereas the combined
quantum transition is governed by the conservation
law for only one component of the involved mo-
menta. It reflects the symmetry properties of 2D e-h
system in a strong magnetic field [32, 33, 37].

The expressions (9–12) describe the dipole–ac-
tive quantum transitions, providing full description
of the probabilities of the combined quantum tran-
sitions. The coefficients B��Q,	� together with inte-
grals in (9, 10) determine the band shapes in the
whole energy intervals of the absorption bands,
� 1 � �̃	 � 0. The analytical expressions for the
band shapes can be obtained [35] in the vicinities of
the band edges, at �̃�  0 and �̃�  � 1.

Spectral functions f1��̃� and f2��̃� corresponding
to the integrals in (9, 10) determining the absorption
band shapes for two circular light polarizations in
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the Faraday geometry are depicted in Figure 1. Both
spectral functions have the same maximal spectral
width corresponding to the ionization potential Il of
the magnetoexciton X0,0 at k � 0 (unity in nondi-
mensional energy units). This means that all points
of the magnetoexciton band take part in the quan-
tum transition due to participation of the back-
ground electrons. The maximum width of the band
shapes is the same for both circular polarizations
because this feature is exclusively due to the mo-
mentum conservation law in x in-plane direction in
the Landau gauge description. Both functions f1��̃�
and f2��̃� decrease linearly near �̃ � 1 but f1��̃�
decreases with a smaller slope than f2��̃�. In the
vicinity of �̃ � 0 f1��̃� vanishes linearly due to
exclusively the exchange Coulomb interaction term,
while f2��̃� has an exponentially decreasing tail.

Similar to [34] these calculations are valid in the range
of magnetic field, where the electron cyclotron energy
exceeds the value of the ionization potential Il�H�.

3. Collective Elementary Excitations of
Two-Dimensional Magnetoexcitons in the
Bose-Einstein Condensation State

For the very beginning we will introduce the
operators describing the magneto-excitons and
plasmons, and their commutation relations.

The creation and annihilation operators of mag-
netoexcitons are two-particle operators reflecting
the electron-hole (e-h) structure of the excitons.
They are denoted below as d†�P� � and d�P� �, where
P� �px,py� is the two-dimensional wave vector. There
are also the density fluctuation operators for elec-
trons �̂e�Q� � and for holes �̂h�Q� � as well as their linear
combinations �̂�Q� � and D̂�Q� �. They are determined
below

�̂e�Q� � � �
t

eiQytl2a†
t

Qx

2
at�

Qx

2
;

�̂h�Q� � � �t
eiQytl2a†

t�
Qx

2
at

Qx

2
;

�̂�Q� � � �̂e�Q� � � �̂h� � Q� �;

D̂�Q� � � �̂e�Q� � � �̂h� � Q� �;

d†�P� � �
1

�N
�

t

eiPytl2a†
t�

Px

2
b†

t�
Px

2
;

d�P� � �
1

�N
�

t

eiPytl2bt�
Px

2
at�

Px

2
;

N̂e � �̂e�0�;

N̂h � �̂h�0�;

�̂�0� � N̂e � N̂h;

D̂�0� � N̂e � N̂h; (14)

and are expressed through the Fermi creation and
annihilation operators a†

p,ap for electrons and b†
p,bp

for holes. The e-h Fermi operators depend on two
quantum numbers. In Landau gauge one of them is
the wave number p and the second one is the
quantum number n of the Landau level. In the
lowest Landau level (LLL) approximation n has
only the value zero and its notation is dropped. The
wave number p enumerates the N-fold degenerate
states of the 2D electrons in a strong magnetic field.
N can be expressed through the layer surface area S
and the magnetic length l as follows: N
� S/2�l2; l2 � �c/eH, where H is the magnetic
field strength. The operators (14) obey to the fol-
lowing commutation relations, most of which were
discussed for first time in the papers [5, 13]

��̂�Q� �,�̂�P� �� � � 2iSin��P� � Q� �zl2

2 	�̂�P� � Q� �

�D̂�Q� �,D̂�P� �� � � 2iSin��P� � Q� �zl2

2 	�̂�P� � Q� �

FIGURE 1. The absorption band shapes for two cir-
cular polarizations of the light in the Faraday geometry:
f1��̃� —curve 1, f2��̃� —curve 2. The ratio of f2/f1 is
shown in the inset.
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��̂�Q� �,D̂�P� �� � � 2iSin��P� � Q� �zl2

2 	D̂�P� � Q� � (15)

�d� p�,d†�Q�� � �kr�P� ,Q� � �

�
1
N� iSin��P� � Q� �zl2

2 	�̂�P� � Q� �

� Cos��P� � Q� �zl2

2 	D̂�P� � Q� ��
��̂�P� �,d�Q� �� � 2iSin��P� � Q� �zl2

2 	d�P� � Q� �

��̂�P� �,d��Q� �� � � 2iSin��P� � Q� �zl2

2 	d � �P� � Q� �

�D̂�P� �,d��Q� �� � 2Cos��P� � Q� �zl2

2 	d��Q� � P� �

�D̂�P� �,d�Q� �� � � 2Cos��P� � Q� �zl2

2 	d�P� � Q� � (16)

One can observe that the density fluctuation op-
erators (14) with different wave vectors P� and Q� do
not commute. Their noncommutativity is related
with the vorticity which accompanies the presence
of the strong magnetic field and depends on the
vector-product of two wave vectors P� and Q� and its
projection on the direction of the magnetic field
�P� � Q� �z. These properties considerably influence
on the structure of the equations of motion for the
operators (14) and determine new aspect of the
magneto-exciton-plasmon physics. Indeed in the
case of 3D e-h plasma in the absence of the external
magnetic field the density fluctuation operators do

commute [38]. The magneto-exciton creation and
annihilation operators d†�P� � and d†�Q� � as in general
case do not obey exactly to the Bose commutation
rule. Their deviation from it is proportional to the
density fluctuation operators �̂�P� � Q� � and D̂�P�
� Q� �. The above discussed operators determine
the structure of the 2D e-h system Hamiltonian in
the LLL approximation. In the previous papers [16,
17, 19–21] the initial Hamiltonian was gauge-in-
variant.

It has the form

Ĥ �
1
2�

�Q

W �Q��̂�Q� ��̂�Q� � � N̂e � N̂h�

� �eN̂e � �hN̂h, (17)

where

W �Q �
2�e2

	0S�Q� �
Exp� �

Q2l2

2 �; � � �e � �h (18)

The starting Hamiltonian Ĥ in the quasiaverages
theory approximation (QATA) has form

Ĥ �
1
2�

�Q

W �Q���Q� ��� � Q� � � N̂e � N̂h� � �eN̂e

� �hN̂h � ��N�ei�d†�k� � ei�d�k�� (19)

The equations of motion for the operators (14) are
obtained using the commutation relations (16).
They are

i�
d
dtd�P� � � �d�P� �, Ĥ� � �E�P� � � �� �d�P� � � ��Nei��kr�P� , K� � � 2i�

�Q

W �QSin��P� � Q� �zl2

2 	�̂�Q� �d�P� � Q� �

� �ei��iSin��P� � K� �zl2

2 	�̂�P� � K� �

�N
� Cos��P� � K� �zl2

2 	D̂�P� � K� �

�N �;

i�
d
dtd†

�2K� � P� � � �d†
�2K� � P� �, Ĥ� � ��� � E�2K� � P� ��d†

�2K� � P� � � ��Nei��kr�P� ,K� �

� 2i�
�Q

W �QSin � ���2K� � P� � � Q� �z l2

2 	� d†
�2K� � P� � Q� ��̂� � Q� � � �ei�� �iSin��P� � K� �zl2

2 	�̂�P� � K� �

�N

� Cos��P� � K� �zl2

2 	D̂�P� � K� �

�N �;
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i�
d
dt�̂�P� � K� � � ��̂�P� � K� �,Ĥ� � � i�

�Q

W �QSin(���P� � K� � � Q� �zl22�/2)[�̂�P� � K� � Q� ��̂�Q� � � �̂�Q� ��̂�P� � K� � Q� �]

� 2i��N Sin��P� � K� �2l2

2 	� �ei�d�P� � � ei�d†
�2K� � P� ��;

i�
d
dtD̂�P� � K� � � �D̂�P� � K� �,Ĥ� � � i�

�Q

W �QSin���P� � K� � � Q� �zl2

2 	��̂�Q� �D̂�P� � K� � Q� � � D̂�P� � K� � Q� ��̂�Q� ��

� 2��NCos��P� � K� �zl2

2 	�ei�d�P� � � ei�d†
�2K� � P� ��. (20)

Here

� � �Eex�K� � ��v � �E�K� � ��v;

� � v2; Nex � v2N. (21)

Following the equations of motion (20) we will
introduce four interconnected retarded Green’s
functions at T � 0 [39, 40]

G11�P� ,t� � ��d�P� ,t�;d†�P� ,0���;

G12�P� ,t� � ��d†�2k� � P� ,t�;d†�P� ,0���;

G13�P� ,t� � �� �̂�P� � k� ,t�

�N
;d†�P� ,0��� ;

G14�P� ,t� � ��D̂�P� � k� ,t�

�N
;d†�P� ,0��� . (22)

They are determined by the relations

G�t� � ��Â�t�;B̂�0��� � � i���A�t�, B�0���;

Â�t� � e
iHt
� Âe

iHt
� ; �Â, B̂� � ÂB̂ � B̂Â (23)

where Ĥ is the Hamiltonian (19).
The average �� will be calculated at T � 0 in HFB

approximation using the ground state wave func-
tion ��g�k�� (11). The time derivative of the Green’s
function is calculated as follows

i�
d
dtG�t� � i�

d
dt�� A�t�;B�0��� � ���t���Â�0�,B̂�0���

� �� i�
d
dtA�t�;B�0��� � ���t�C

� ���Â�t�,Ĥ�;B̂�0��� (24)

By C will be denoted the average values, which do
not depend on t. They are not needed in an explicit

form for the determination of the energy spectrum
of the elementary excitations.

Fourier transforms of the Green’s functions (29)
will be denoted as

G11�P� ,�� � ��d�P� ��d†�P� ����;

G12�P� ,�� � ��d†�2K� � P� ��d†�P� ����;

G13�P� ,�� � �� �̂�P� � K� �

�N
�d†�P� ���

�

;

G14�P� ,�� � ��D̂�P� � K� �

�N
�d†�P� ���

�

. (25)

The two representations are related to each other

G�P� ,�� � �
�

�

ei�tG�P� ,t�dt � �
0

�

ei�t�tG�P� ,t�dt

where the infinitesimal value �3 � 0 guarantees
for the retarded Green’s function G�P� ,t� the conver-
gence of the integral in the interval �0,��.

The equation of motion in the frequency repre-
sentation can be deduced on the basis of Eq. (31)

�
�

�

dtei�ti�
dG�t�

dt � i��
0

�

dtei�t�t
dG�t�

dt �

� i��
0

�

dtG�t�
dei�t�t

dt � ��� � i��G��� � C

� �
�

�

dt���Â�t�,Ĥ�;B̂�0���ei�t (26)

The Green’s functions (25) will be named as one-
operator Green’s functions because they contain in
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the left-hand side of the vertical line only one sum-
mary operator of the types d�P�, d†�P�, �̂�P�, and
D̂�P�. At the same time these Green’s functions are
two-particle Green’s functions, because the sum-
mary operators (14) are expressed through the
products of two Fermi operators. In this sense the
Green’s functions (25) are equivalent with the two-
particle Green’s functions introduced by Keldysh
and Kozlov in their fundamental paper [27], form-
ing the base of the theory of high density excitons in
the electron-hole description. But in difference on
[27] we are using the summary operators (14),
which represent integrals on the wave vectors of
relative motions.

The equations of motion for the Green’s function
(25) are the following

��� � �� � E�P� � � i��G11�P� ,�� � C

� 2i�
�Q

W �QSin��P� � Q� �zl2

2 	���̂�Q� �d�P� � Q� ��d†�P� ����

� �ei��iSin��P� � K� �zl2

2 	G13�P� ,��

� Cos��P� � K� �zl2

2 	G14�P� ,���;

��� � �� � E�2K� � P�� � i��G14�P� ,�� � C � 2i�
�Q

W �Q

Sin���2K� � P� � � Q� �zl2

2 	��d†�2k� � P� � Q� ��̂

� � Q� ��d†�P� ���� � �e � i��iSin��P� � K� �zl2

2 	G13�P� ,��

� Cos��P� � K� �zl2

2 	G14�P� ,���;

��� � i��G13�P�,�� � C � i�
�Q

W �QSin���P� � K� � � Q� �zl2

2 	
� ����̂�P� � K� � Q� �

�N
�̂�Q� � � �̂�Q� �

�̂�P� � K� � Q� �

�N ��
� d†�P� ���

�

� 2i�Sin��P� � K� �zl2

2 	�e � i�G11�P� ,��

� ei�G12�P� ,���;

��� � i��G14�P� ,�� � C � i�
�Q

W �QSin

���P� � K� � � Q� �zl2

2 	����̂�Q� �
D̂�P� � K� � Q� �

�N

�
D̂�P� � K� � Q� �

�N
�̂�Q� ���d†�P� ���

�

� 2�Cos��P� � K� �zl2

2 	
� �e � i�G11�P� ,�� � ei�G12�P� ,���. (27)

The equation of motion (27) for one-operator
Green’s functions G1j�P� ,��, where j � 1,2,3,4, give
rise to new two-operator(four-particle) Green’s
functions of the types ��P̂(Q� )d(P�  Q� )�d†(P�)���, ��d†(2k� 
P�  Q� )�̂(Q� )�d†(P�)���, ��(�̂(P�k�  Q� )�(Q))/�N(Q� )�d†

(P�)���, and ��(D̂(P�  k�  Q� )�(Q))/�N�̂(Q� )�d†(P�)��� gen-
erated by the nonlinear terms in the equations of motion
(24) for the operators (14). It is a well known situation
described by Zubarev [40] in his review article. For these
two-operator Green’s functions of the first generation
following the rule (26) the new equations of motion
were deduced. This second step in the frame of the
given method will form the second link of an infinite
chain of equations of motion. Both links constructed in
such a way will be exact in the frame of the Hamiltonian
(19). These new equations of motion will contain in their
components new types of three-operator Green’s func-
tions of the first generation as well as new types of the
two-operator Green’s functions of the second genera-
tion, and so on.

The interruption of these infinite chains of equa-
tions of motion is needed using reasonable approx-
imations. Following the Zubarev’s method [40] we
will truncate the three-operator Green’s functions
expressing them through the one-operator Green’s
functions (25) multiplied by the average values of
another two remaining operators. This method, if
applied to the two-operator Green’s functions of the
second generation means in fact to linearize them.

The linearization can be achieved conserving
only the macroscopic large values of the operators
substituting them by their average values at some
well definite values of the wave vector and neglect-
ing all their infinitesimal values as follows

d�P� � � �kr�P� ,K� �ei��Nex; d†�P� � � �kr�P� ,K� �ei��Nex;

D̂�P� � � �kr�P� ,0��D̂�0�� � �kr�P� ,0�2Nex;

��P� � � �kr�P� ,0���̂�0�� � 0. (28)

The truncation procedure was successfully applied
in the case of electron-phonon interaction not only
for the metals in normal states but also for the
superconductors.

It can be applied also in the case of Bose–Einstein
condensed magnetoexcitons because this phenom-
enon was taken into account for the very beginning

TWO-DIMENSIONAL MAGNETOEXCITONS

VOL. 110, NO. 1 DOI 10.1002/qua INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 185



by the Bogoliubov method of quasiaverages. The
calculations of the average values of the products of
two operators extracted from the left-hand side of
the three-operator Green’s functions have on made
using the ground state wave function of the Bose–

Einstein condensed magnetoexcitons. On the basis
of this some supplementary simplifications of the
cumbersome expressions were proposed.

G13�P� ,�� we will obtain

� i�
�Q

W �QSin���P� � K� � � Q� �zl2

2 	����̂�P� � K� � Q� �

�N
�̂�Q� � � �̂�Q� � �

�̂�P� � K� � Q� �

�N ��d†�P� ���
�

� C �
1

��� � i���
�Q

�
�R

W �QW�RSin���P� � K� � � Q� �zl2

2 	Sin���P� � K� � Q� � � K� �zl2

2 	
� ����̂�P� � K� � Q� � R� �

�N
�̂�R� ��̂�Q� � � �̂�R� �

�̂�P� � K� � Q� � R� �

�N
�̂�Q� � � �̂�Q� �

�̂�P� � K� � Q� � R� �

�N
�̂�R� �

� �̂�Q� ��̂�R� �
�̂�P� � K� � Q� � R� �

�N ��d†�P� ���
�

�
1

��� � i���
�Q

�
�R

W �QW�RSin���P� � K� � � Q� �zl2

2 	Sin��Q� � R� �zl2

2 	
� ����̂�P� � K� � Q� �

�N
�̂�R� ��̂�Q� � R� � �

�̂�P� � K� � Q� �

�N
�̂�Q� � R� ��̂�R� � � �̂�R� ��̂�Q� � R� �

�̂�P� � K� � Q� �

�N

� �̂�Q� � R� ��̂�R� �
�̂�P� � K� � Q� �

�N ��d†�P� ���
�

�
2�

��� � i���
�Q

W �QSin���P� � K� � � Q� �zl2

2 	
� Sin���P� � Q� � � K� �zl2

2 	�e � i����d�P� � Q� ��̂�Q� � � �̂�Q� �d�P� � Q� ���d†�P� ���� � ei����d†�2K� � P� � Q� ��̂�Q� �

� �̂�Q� �d†�2K� � P� � Q� ���d†�P� ����� �
2�

��� � i���
�Q

W�QSin���P� � K� � � Q� �zl2

2 	
� Sin��Q� � K� �zl2

2 	 � �e� � i������̂�P� � K� � Q� �d�Q� � K� � � d�Q� � K� ��̂�P� � K� � Q� ���d†�P� ����

� ei�����̂�P� � K� � Q� �d�K� � Q� � � d†�K� � Q� ��̂�P� � K� � Q� ���d†�P� ����� (29)

In the frame of the approximation (28) the two last
sums in (29) happen to be equal to zero, due to the
vorticity and symmetry properties of the system.
But in other similar cases the different from zero

terms will appear. The truncations and the decou-
plings of the three-operator Green’s functions gen-
erated by all four equations of motion (27) will be
effectuated using the approximations

�� �̂�P� � K� � Q� � R� �

�N
�̂�R� ��̂�Q� ��d�P� ���

�

 G13�P� , ����kr�Q� ,P� � K� ���̂�R� ��̂(R� �� � ��kr�R� , � Q� �

� �kr�R� ,P� � K� ����̂�Q� ��̂(Q� ��];

���̂�P� � K� � Q� �

�N
�̂�R� ��̂�Q� � R� ��d†�P� ���

�

 G13�P� ,����kr�Q� ,0���̂�R� ��̂�R� �� � ��kr�R� ,P� � K� � � �kr�R� ,Q� � K� � P� ����̂�P�

� K� � Q� ���Q� � K� � P� ��];

�� �̂�R� ��̂�Q� � R� �
D̂�P� � K� � Q� � R� �

�N
�d†�P� ���

�

 �kr�Q� ,0�G14�P� ,����̂�R� ��̂(R� �� � G13�P� ,����kr�R� ,P� � K� �

� �kr�R� ,Q� � K� � P� ����̂�Q� � K� � P� �D̂�P� � K� � Q� ��;
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�� �̂�R� ��̂�Q� �
D̂�P� � K� � Q� � R� �

�N
�d†�P� ���

�

 �kr�R� , � Q� �G14�P� ,����̂�Q� ��̂(Q� ��

� G13�P� ,����kr�R� ,P� � K� ���̂�Q� �D̂�Q� �� � �kr�Q� ,P� � K� ���̂�R� �D̂� � R� ���. (30)

After the truncations and linearizations the multi-
operator Green’s functions are expressed through
the one-operator Green’s function G1j�P� ,��, with j
� 1,2,3,4, and their four equations of motion can
be written in a close form introducing the self-
energy parts �ij�P� , �� as follows

�
j-1

4

G1j�P� , ���jk�P� ,�� � C1k; k � 1,2,3,4 (31)

There are 16 different components of the self energy
part of the 4 � 4 matrix as follows

�11�P� ,�� � ��� � � � E�P� � � i�� � 4�
�Q

W �Q
2Sin2�[P� � Q� �zl22

��̂�Q� ��̂�Q� ��

�� � � � E�P� � Q� � � i�

�

4�v�W�P�K N�Sin2��P� � K� �zl2

2 	
�� � � � E�K� � � i�

;

�21�P� ,�� �

4�e2i�v�W�P�K N�Sin2��P� � K� �zl2

2 	
�� � � � E�K� � � i�

;

�31�P� ,�� � i�ei�Sin��P� � K� �zl2

2 	�1 �
2�W�P�KN�

�� � � � E�K� � � i�	
�

4W�P�K Sin�[P� � K� �zl2

2 �� � � � E�K� � � i���R
W�R Sin��R� � K� �zl2

2 	��̂�Q� �d�K� � R� ���N

� 4�
�Q

W �QW�P�KSin��P� � Q� �zl2

2 	Sin���P� � Q� � � �P� � K� ��zl2

2 	��̂�Q� �d�K� � Q� ���N

�� � �� � E�P� � Q� � � i�

� 4�
�Q

W �Q(W �Q��K�P)W�P�KSin��P� � Q� �zl2

2 	Sin ���P� � K� � � Q� �zl2

2 	 ��̂�Q� � K� � P� �d�P� � Q� ���N
�� � �� � E�P� � Q� � � i�

;

�41�P� ,�� � � �ei�Cos��P� � K� �zl2

2 	. (32)

These matrix elements form the first column of the
4 � 4 matrix ���ij��. The second column is formed by

the matrix elements �j2�P� ,�� with j � 1,2,3,4 as
follows

�12�P� ,�� � 4�

e2i�v�W�K�PN�Sin2��P� � K� �zl2

2 	
�� � � � E�K� � � i�

;

�22�P� ,�� � �� � � � E�2K� � P� � � i� � 4�
�Q

W �Q
2

Sin2���2K� � P� � � Q� �zl2

2 	��̂�Q� ��̂(Q� ��

�� � � � E�2K� � P� � Q� � � i�

� 4�v
�W�P �KN�Sin2��P� � K� �zl2

2 	
�� � � � E�K� � � i�

;
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�32�P� ,�� � i�ei�Sin��P� � K� �zl2

2 	�1 �
2�W�P �KN�

�� � �� � E�K� � � i��
� 4

W�P �KSin��P� � K� �zl2

2 	
�� � �� � E�K� � � i���R W�RSin��R� � K� �zl2

2 	�d†�K� � R� ��̂� � R� ���N

� 4�
�Q

W�QW�K�PSin���2K� � P� � � Q� �zl2

2 	Sin���2K� � P� � Q� � � �K� � P� ��zl2

2 	 �d†�K� � Q� ��̂(Q� ���N
�� � �� � E�2K� � P� � Q� � � i�

� 4�
�Q

W�Q�W�P � �K � W�P � �K � �Q� �Sin���2K� � P� � � Q� �zl2

2 	Sin���P� � K� � � Q� �zl2

2 	�d†�2K� � P� � Q� ��̂�K� � P� � Q� ���N
�� � �� � E�2K� � P� � Q� � � i�

;

�42�P� ,�� � �e � i�Cos��P� � K� �zl2

2 	. (33)

The third column of the 4 � 4 matrix ���ij�P� ,����
consists from the self-energy parts �j3�P� ,�� with j
� 1,2,3,4 listed below

�13�P� ,�� � 2i�ei�Sin��P� � K� �zl2

2 	;

�23�P� ,�� � 2i�ei�Sin��P� � K� �zl2

2 	;

�33�P� ,�� � ��� � i��

�
4

��) � i��
�Q

W �QSin2���P� � K� � � Q� �zl2

2 	
� ��KW �Q � W�P � �K���̂�Q� ��̃(Q� ��

� �W�P � �K � W�P � �K � �Q���̃�P� � K� � Q� ��̂�K� � Q� � P� ��];

�43P� ,�) � 0. (34)

The fourth column is composed by the self-energy
parts �j4P� ,�) with j � 1,2,3,4. They are

�14�P� ,�� � 2�ei�Cos��P� � K� �zl2

2 	;

�24�P� ,�� � � 2�ei�Cos��P� � K� �zl2

2 	;

�34�P� ,��

�
4

�� � i��
�Q

W �QW�K�P� �QSin2���P� � K� � � Q� �zl2

2 	
� ��̂�Q� � K� � P� �D̂�P� � K� � Q� ��

�
4

�� � i��
�Q

W�QW�P � �KSin2���P� � K� � � Q� �zl2

2 	
� ���̂�Q� �D̂�Q� �� � ��̂�Q� � K� � P� �D̂�P� � K� � Q� ���;

�44�P� ,�� � ��� � i�� �
4

�� � i��
�Q

W �Q
2

� Sin2���P� � K� � � Q� �zl2

2 	��̂�Q� ���Q� ��. (35)

The most of the self-energy parts �ij�P� ,�� repre-
sented by the formulas (32)–(35) contain the aver-
age values of the two-operator products. They were
calculated using the ground state wave function
��g�k�� (11) and have the expressions

��g�k���̂�Q� ��̂(Q� ���g�k�� � 4u2v2NSin2��K� � Q� �zl2

2 	;

��g�k���̂�Q� � P� � K� ��̂�K� � P� � Q� ���g�k��

� 4u2v2NSin2��K� � �P� � Q� ��zl2

2 	;

��g�k���̂�Q� � P� � K� ��̂�K� � P� � Q� ���g�k��

� 4u2v2N� Sin2��K� � �P� � Q� ��zl2

2 	;

��g�k���̂�Q�D̂(Q� ���8�k�� � 2iu2v2NSin��K� � Q� �2l2

1 	;

��g�k���̂�Q� � P� � K� ��̂�K� � P� � Q� ���g�k��

� 2iu2v2N� Sin2��K� � �P� � Q� ��zl2

1 	;
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��g�k��d†�K� � Q� ��̂�Q� ���g�k���N

� 21uv3N� Sin��K� � �Q� � Q� ��zl2

2 	;

��g�k��d‡�P� � Q� ��̂�P� � Q� � K� ���g�k���N �

� 2iuv3NSin��K� � �P� � Q� ��zl2

2 	;

��g�k���̂�Q� �d�K� � Q� ���g�k���N �

� 2iuv3NSin��K� � Q� �zl2

2 	;

��g�k���̂�P� � Q� �d�K� � P� � Q� ���g�k���N �

� 2iuv3NSin��K� � �P� � Q� ��zl2

2 	. (36)

All these averages are extensive values propor-
tional to N, they essentially depend on the wave
vectors and on the small parameters of the types
u2v2 or uv3.

But only the averages of the type ��̂�Q� ��̂�Q� �� are
real, positive with a constant sign at any values of
the wave vectors.

All another averages are pure imaginary
changing their signs in dependence on their ar-
guments leading to small absolute values of the
corresponding self-energy parts. All of them will
be dropped to simplify the cumbersome expres-
sions (32)–(35).

In spite of the made approximations concerning
the many operator Green’s functions and the aver-
ages of the two-operator products, the obtained
self-energy parts remain cumbersome. But there is
one possibility to radically simplify the further cal-
culations. It is related with the collinear geometry
of the experimental observation of the elementary
excitations, when their propagation direction coin-
cide or is exactly opposite with the condensate
wave vector k�. This geometry will be discussed
below.

The cumbersome dispersion equation is ex-
pressed in general form by the determinant equa-
tion

det��ij�P� ,��� � 0; P� � K� � q�. (37)

It can be essentially simplified in collinear geome-
try, when the wave vectors P� of the elementary
excitations are parallel or antiparallel to the Bose-
Einstein condensate wave vector k�. We will repre-

sent the wave vectors P� in the form P� � k� � q�,
accounting them from the condensate wave vector
k�. The relative wave vector Q� will be also collinear
to k� . In this case the projections of the wave vector
products �P� � K� �z as well as all coefficients pro-
portional to Sin��P� � K� �zl2/2� and a half of the
matrix elements �ij�P� ,�� in the Eq. (37) vanish. The
determinant Eq. (37) disintegrates in two indepen-
dent equations. One of them concerns only to opti-
cal plasmons and has a simple form

�33�K� � q� ;�� � 0; �q� � K� �z � 0 (38)

whereas the second equation contains only the di-
agonal self-energy parts �11, �22, �44, and the quasi-
average constant �

�11�K� � q� ,���22�K� � q� ,���44�K� � q� ,��

� 2�2��11�K� � q� ,�� � �22�K� � q� ,��� � 0 (39)

It determines three interconnected branches. Two
of them describe the proper collective excitations of
Bose–Einstein condensed magnetoexcitons and the
third branch concerns the acoustical plasmons. In
spite of the collinear condition �q� � K� �z � 0, the Eqs.
(38) and (39) and their energy spectra ��q�� are not
invariant under the inversion operation when q� is
substituted by q�, because in the system does exist a
well defined direction selected by the wave vector k�.
For this reason the elementary excitations with wave
vector q� and q� have different energies.

The solutions of the dispersion Eq. (39) will be
discussed in two limiting cases. One of them is the
point k � 0, where the system behaves as an ideal
Bose gas and another case of considerable values of
wave vectors kl � 3 � 4, when the Bose–Einstein
condensed 2D magnetoexcitons can exist in a form
of metastable dielectric liquid phase or of dielectric
droplets. But in all cases the average value
��̂�Q� ��̂(Q� )� and other similar expressions are de-
termined in HFBA by the formulas (36). They are
characterized by a coherence factor Sin2��k�
� Q� �zl2/2�, which vanishes in the point k � 0. All
contributions to the self-energy parts proportional
to square of Coulomb interaction matrix elements
WQ

2 multiplied by the averages �̂(Q� )�̂(Q� ) vanish
also making a 2D magnetoexciton system a pure
ideal gas, when the influence of the excited Landau
levels is neglected. This unusual result was re-
vealed for the first time by Lerner and Lozovik
[15–17] and was confirmed by Paquet et al. [19]. In
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the case k � 0 because the vanishing of the aver-
ages (36) the self-energy parts become

�11�P� ,�� � �� � �� � E�P�;

�22�P� ,�� � �� � �� � E(P);

�44�P� ,�� � �� (40)

and the excitonic part of the dispersion relation as
well the acoustic plasmon frequency look as

��ex�P� � � ���� � E�P��2 � 4�2;

��A�P� � 0. (41)

The values �� � E�k��1 � 2y2� and � � �E�k�
� �� �y � E�k�y3 in the point k � 0 turn to vanish,
i.e., �� � � � E�0� � 0, what leads to the free
magnetoexciton dispersion law ��ex�P� � � E�P�,
and coincides with the result obtained earlier in Ref.
[19]. The acoustical plasmon branch as well as the
optical branch has frequencies equal to zero. The case
k � 0, but v � 0, can be obtained from the previous
formula because, as earlier, the averages (36) as well
as the parameter � are vanishing, whereas the chem-
ical potential is different from zero, i.e., �� � E�k�.

In this case, the exciton dispersion law in col-
linear geometry with P � k � qCos� has the form

��ex�q� � � �E�k � qCos�� � E�k��,

Cos� � � 1, q � 0 (42)

The both dependences are represented in Figure 2,
where x � ql was introduced.

The case of k � 0 with filling factor v � v2


 1 represents interest because in this region of
parameters a metastable dielectric liquid phase
does exist. It is formed by the Bose–Einstein con-
densed magnteoexcitons with kl � 3 � 4 and with
different from zero motional dipole moments ��
� �k � z��l2. This state was revealed in Ref. [20]
considering the system of electrons and holes on
their lowest Landau levels, without addressing to
excited Landau levels (ELLs), but taking into ac-
count coherent excited states, when one e-h pair
exits from the condensate leaving all another pairs
in their coherent pairing state.

The correlation energy was calculated beyond the
Hartree–Fock–Bogoliubov approximation (HFBA) in
the frame of Keldysh–Kozlov–Kopaev method using
the Nozieres Comte approach [20, 41].

The Bose–Einstein condensed magnetoexcitons
moving as a whole with wave vector k� and with
parallel motional dipole moments �� have a signifi-
cant polarizability which gives rise to attractive
interaction between them and lower on the energy
scale the values of the chemical potential and of the
mean energy per one e-h pair. But this lowering is
not monotonous and at some value of the filling
factor vm

2 the relative minim a on the corresponding
curves appear with positive compressibilities in
their vicinity. The relative minimum on the chemi-

FIGURE 2. The energy spectrum of elementary exci-
tations of magnetoexcitons and acoustical plasmons in
the case when concentrations corrections have not
been taken into account. (a) The wave vector of BEC
magnetoexcitons equal to 0. (b) The wave vector k is
different from zero, but the filling factor equals to zero.
[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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cal potential curve depends essentially on the
damping of magnetoexciton level. It was investi-
gated in the Ref. [21] and is represented in Figure 3.

If the average filling factor v2 is less than vm
2 the

dielectric liquid phase will exist in the form of
droplets with optimal concentration inside them
nex/2�l0

2 corresponding to filling factor vm
2 .

The collective elementary excitations are calcu-
lated in the conditions K � 3 � 4 and v2  vm

2 ,
when the ground state of the magnetoexcitons is
similar with the metastable dielectric liquid phase.

Even in collinear geometry the diagonal self-
energy parts �ii�K� � q�,�� with i � 1,2,3,4 and
kl � 3,6 can not be calculated analytically at arbi-
trary values of the relative wave vector q�. By this
reason we will obtain the analytical expressions in
the case kl  3,6 and ql � 1 
 kl using a series
expansions on the small values ql 
 1 as compared
with kl  3,6.

Up till now we have discussed the energy spec-
trum of a Bose–Einstein condensed magnetoexci-
tons in pure ideal conditions which take place in the
case k � 0, when the interactions in the electron-
hole system are reciprocally compensated at arbi-
trary values of the filling factor v2 � 0, as well as in
the case k � 0, when the nonlinearity is completely
neglected putting v � 0. In the last case taking into
account the nonlinearity v2 � 0 we can observe its
unusual influence on the earlier discussed energy
spectrum leading to its qualitative new and princi-
pal changes. They are different from the simple
additions of the concentration corrections to the
exciton branches of spectrum as one could expect
on the base of a simple perturbation theory. Instead
of it the influence of the concentration terms pro-
portional to u2y2 entering into the compositions of

the self-energy parts �11, �22, and �44 happens to be
much more important. The self-energy parts con-
tain the different linear on �̃ expressions of the type
Li��̃� � �̃ � �̃ � Ẽ�y � xCos�� which appear in
the forms Ai/Li��̃� and determine the concentration
corrections. For simplicity we will demonstrate
their influence taking into account only the denom-
inators in the first power. The self-energy parts �11

and �22 contain also such denominators in power
two of the forms Bi/�Li��̃��2, but these terms for
simplicity were neglected in the numerical calcula-
tions. The presence of the unknown frequency �̃ in
the denominators side by side with another term in
numerators leads to the increasing of the order of
the dispersion equation and of the number of the
energy spectrum branches. In our concrete case the
order of dispersion equation is doubled and instead
of three branches of the energy spectrum we are
dealing with six branches. Two of them are acous-
tical plasmon branches with energies proportional
to the perturbation theory parameter v2�1 � v2� and
with different � signs. It was natural to expect the
appearance of these two branches of acoustical
plasmon spectrum and the same takes place with
the optical plasmon spectrum. Unusual behavior
happens with the exciton energy and quasienergy
branches which become doubled undergoing each
of them a bifurcation. The new branches have the
form of the previous exciton branch plus or minus
one additional of amount approximately equal to
the energy of the acoustical plasmon with wave
vector different from the wave vector of the exciton
elementary excitation by the condensate wave vec-
tor k. The same change takes place with the quasie-
nergy exciton branch. The neglected denominator
in power two could create exciton branch with two
acoustical plasmons. The Bose–Einstein condensa-
tion with k � 0 means that the e-h system is moving
as regards the laboratory reference frame with a
velocity equal to the group velocity Vg of the mag-
netoexcitons, reflected in the Figure 4. It means that
the terms �V� gq� will appear in the dispersion rela-
tions for all three branches. To create the exciton-
type collective elementary excitations when the
ground state of the system is a dielectric liquid
phase with negative values of the chemical poten-
tial � it is necessary to eliberate an exciton from the
liquid communicating it an amount of energy at
least equal to ���. This values ��� are equal to 0.31Il

and 0,69Il at the filling factors v2 equal to 0.028 and
0,28 correspondingly. Because the concentration
corrections to the energy spectrum in our case ap-
pear in the form of acoustical plasmon energy ��AP

FIGURE 3. The relative minimum on the chemical po-
tential dependence on the filling factor.
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two exciton branches have approximately the ener-
gies ��� � ��AP. The exciton and plasmon quasi-
energy branches can be obtained from the exciton
and plasmon energy branches by two successive
reflections as regards two coordinate axes. These
properties can be observed on the Figure 5.

4. Conclusion

The combined two-dimensional magnetoexci-
ton-cyclotron resonance was described as a dipole-
active transition in the frame of the second order
perturbation theory, when the electron-radiation
and electron-electron Coulomb interactions are
used as perturbations. This combined optical quan-
tum transition can be described also in the frame of
the first-order perturbation theory as a quadrupole
active quantum transition with a probability pro-
portional to �Q� 2D�2, which vanishes in the Faraday
geometry of excitation. The Hamiltonian describing

the interaction of the circularly polarized radiation
with the 2D electron-heavy-hole system in a strong
perpendicular magnetic field was deduced. The
magnetoexcitons and the heavy holes are character-
ized supplementary by their quantum states in the
frame of the p-type valence band with strong spin-
orbital coupling. The p-functions of the type �x
� iy� are characterized by the orbital momentum
projection M � � 1 on the direction of the
external magnetic field, what is equivalent to intro-
duction of the circular polarization vectors �� M

� 1/�2�a�1 � ia�2�, where a�1 and a�2 are in-plane unit
vectors. The value M or �� M are supplementary char-
acteristic of the magnetoexcitons side-by-side with
the quantum numbers ne and nh of the Landau
levels and with the exciton wave vector k�ex.

The circularly polarized radiation consists of
photons with wave vectors Q� and polarization vec-
tors �� Q

	, which are arbitrary oriented in the 3D
space. The photons interact with e-h pairs situated
on the 2D layer in a strong perpendicular magnetic
field. They are characterized by their circular polar-
ization vectors �� M. The light-matter interaction is
characterized by the matrix elements proportional
to the scalar products (�� Q�

	*
� �� M). The creation of the

e-h pair in the presence of a background electron
gives rise to the new combined exciton-electron
absorption bands. When the new optically created
electron has the same spin orientation along the

FIGURE 5. The energy spectrum of elementary exci-
tations of magnetoexcitons and acoustical plasmons in
the case when filling factor of the lowest Landau levels
equals to v2 � 0.28. The dimensionless wave vector of
the Bose–Einstein condensed magnetoexcitons equals
to 3, 6. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

FIGURE 4. (a) The dispersion law of the magnetoexci-
ton. (b) The group velocity Vg�k� of the magnetoexciton.
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magnetic field direction as the background electron,
both electrons take identical part in the quantum
transitions as in the initial stage as well as in the
final stage with the contribution of the direct and
exchange Coulomb interaction terms. For another
circular polarization of the light both electrons have
antiparallel spins and contribution of the exchange
interaction terms is absent. As a result the proba-
bilities of the combined quantum transitions in the
first case contain a supplementary factor 4 as com-
pared to the second variant.

The band shapes are determined by the spectral
functions f1��̃� and f2��̃� and by the resonant denom-
inators of the second-order perturbation theory. The
spectral functions are also different for different cir-
cular polarizations because the exchange Coulomb
interaction contributes only to the first one. The ab-
sorption band shapes in the Faraday geometry were
obtained. Both spectral functions f1��̃� and f2��̃� have a
maximal width equal to the ionization potential of the
magnetoexciton at the point k � 0.

The density of states in 2D structures leads to
spectral functions fi��̃�, i � 1, 2 with maximal values
at the point �̃ � � 1, which corresponds to the
creation of magnetoexcitons at the bottom of their
energy band. In this region both spectral functions
decrease linearly with a smaller slope in the case
f1��̃� and with a larger slope in the case f2��̃�. Near
the upper limit of the variable �̃ � 0 the function
f1��̃� decreases linearly whereas the function f2��̃�
decreases exponentially. The influence of the reso-
nant denominators on the absorption band shapes
is especially important in the region of not so high
magnetic field strength when the electron cyclotron
energy is comparable with the magnetoexciton ion-
ization energy. The resultant band shapes are char-
acterized by the decreasing heights and by increas-
ing widths when the magnetic field increases. The
widths are due to inhomogeneous broadening aris-
ing from the magnetoexciton energy band disper-
sion law. The two absorption band shapes corre-
sponding to different circular polarizations in the
Faraday geometry can be distinguished experimen-
tally.

The circularly polarized light creates the spin-
polarized electrons, leads to optical alignment of
magnetoexcitons and induces the nuclear magnetic
field generation through the Fermi contact hyper-
fine interaction. Its influence on the Zeeman split-
ting of the magnetoexciton levels can be observed
as the Overhauser effect.

The collective elementary excitations of a system of
Bose-Einstein condensed magnetoexcitons interacting

with electron-hole plasma in a strong perpendicular
magnetic field were studied. The breaking of the
gauge symmetry was introduced into the Hamilto-
nian following the Bogoliubov’s theory of quasiaver-
ages. The equations of motion for integral two-parti-
cle operators describing the creation and annihilation
of magnetoexcitons as well as the electron-hole
plasma density fluctuations were derived. The two-
particle operators were used to construct four types of
Green’s functions. Two of them are normal and ab-
normal exciton Green’s functions whereas another
two describe the acoustical and optical plasmons. The
Green’s functions obey to four equations of motion,
which contain nonlinearity and higher order Green’s
functions, for which another more complicate equa-
tions of motion were obtained. The chains of equa-
tions of motion containing the six-particle Green’s
functions were truncated expressing approximately
the six-particle Green’s functions through the two-
particle Green’s functions multiplied by the average
values of the four-particle operators. This disconnec-
tion procedure permits to obtain an enclosed set of
four Dyson equations with self-energy parts �ij with
i,j � 1,2,3,4 forming a 4 � 4 matrix. Its determinant
gives rise to four order dispersion equation, the ele-
ments of which are the self-energy parts. In collinear
geometry of observation when the elementary excita-
tion wave vectors are collinear with the condensate
wave vector the dispersion equation desintegrates in
two independent equations. One of them contains
only the self-energy part of the optical plasmons,
whereas the second third order dispersion equation
contains the diagonal self-energy parts of other three
components. In their compositions there are denom-
inators containing the unknown frequency what dou-
bled the order of the dispersion equation transform-
ing it from three to six orders. Six branches of the
energy spectrum describe two exciton-plasmon en-
ergy branches, two exciton-plasmon quasienergy
branches and two of them with 	 signs belong to
acoustical plasmon branches.
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